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Abstract

stationary wavelet transform and spectrum analysis, a new method with high detective sensitivity was developed for analyzing fMRI time

The low signal to moise ratio (SNR) of functional M RI (fM RI) prefers more sensitive data analysis methods. Based on

series, which does not require any prior assumption of the characteristics of noises. In the proposed method, every component of fM RI
time series in the different time-frequency scales of stationary wavelet transform was discerned by the spectrum analysis, then the compo-
nents from noises were removed using the stationary wavelet transform, finally the components of real brain activation were detected by
cwoss-correlation analysis. The results obtained from both simulated and in vivo visual experiments illustrated that the proposed method
has much higher sensitivity than the traditional cross-correlation method

Keywords:

Functional magnetic resonance imaging (fM RI)
based on the blood-oxygenation-level -dependente
(BOLD) contrast has rapidly become a powerful tool
for exploring the human brain functions by virtue of
its noninvasiveness, repeatability and excellent tem-
poral-spatial resolution' ! . Unfortunately, the ampli-
tude change of paradigm responsive signal (PRS) in
fMRI due to the paradigm stimulation is only 1% —
5% at 1.5 T{%3, in addition to noises such as ran-
dom noise and baseline drift>~9, which makes the
analysis procedure more complicated. So removing
noises and enhancing sensitivity are one of the impor-

tant goals of fM RI analysis.

A variety of methods have been developed for an-
alyzing fM RI data sets, which are classified by many

9

7—9 . . .
researchers' into two categories; model-driven

method and data-driven method. The typical model-
driven method is general linear model (GLM )!'" .
The advantage of GLM s its ability of modeling the
effects of many noises, for example, low frequency
drift, and eliminating them. However, G LM needs
to make prior assumption on the components of the
fM RI BOLD signals. For example, the low frequency

fMRI, stationary wavelet transform spectrum analysis data analysis

drift is simulated by the discrete cosine function and
random noise is considered as Gaussian distribution in
GLM. Thus the validity of the GLM depends on the
extent to which the data satisfies the underlying as-

sumptions. In contrast with the model-driven

method, the data-driven method, such as fuzzy clus-
" principal component analysis '?,

independent component analysis ¥, does not need

tering analy sidl

any prior hy pothesis of paradigm or noises. The data-
driven method will be more and more prevailing in the
future due to its higher efficiency on the event-related
fM RI experiments that will be increasingly dominate
the fM RI area. However, it is difficult to give a
physiological interpretation and a statistical signifi-
cance level to the activated results detected by the da-
ta-driven methods.

As an analysis tool, wavelet transform has been
14) . .

. Using the tradi-
tional denoising method of wavelet transform to re-

widely used in M RI analysis[

move noises of M RI series in stationary wavelet do-

. 14 15 .
main has been reported[ ! However, this method

only involvs random noise, not including the baseline

[6.16 17]

drift. There were reports on removing the
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baseline drift from fMRI series based on the discrete
wavelet transform. However, because the frequency
attribute of the baseline drift is poorly understood ¥,
and the time-frequency scales of the baseline drift
cannot be exactly predicted, the way to remove the
baseline drift in these literatures was tentative. In-
stead of using the existing wavelet, Von Tschamer et
al.l"™ designed a set of new wavelets whose frequen-
cy bands were equal to that of the paradigm to opti-
mize analysis of fM RI. It is well known that selecting
the suitable wavelet base is a critical and com plex is-
sue in wavelet analysis, as is limited by many other
factors besides the frequency . For the fM RI analysis,
the suitable wavelet base should be selected from the
analysis results of the simulated data by different
wavelets, but their study just lacked this.

In this article, we present a novel method for
fM RI time series analysis based on the wavelet trans-
form and spectrum analysis. Owing to the property of

multiresolution analysis[ 4,

wavelet transform can
partition the components with the different frequency
bands of a signal into the different time-frequency
scales. So via wavelet transform the different compo-
nents in M RI time series of each pixel, e.g. the high
frequency random noise, the low frequency baseline
drift and the paradigm responsive signal (PRS) with
the frequency in between those of noise and drift, can
be partitioned into the different scales. Thus, after
the time-frequency scales in which the simulated PRS
exists are discerned by the spectrum analysis, random
noise and baseline drift can be removed from the fM -
RI time series by way of eliminating the scales in
which the noises exist when wavelet is reconstructeds
finally the activated pixel can be detected by the
cross-correlation analysis. As long as the frequencies
of PRS and noises are not overlapped; both random
noise and baseline drift can be removed altogether.
Because the stationary wavelet transform has the
property of time shift invariance that is important to
the spectrum analysis and time series analysis *”, this
transform w as utilized to analyze fM RI time series in
this study.

1 Materials

1.1 in vivo visual M RI experiment

Three young right-handed subjects participated
in a visual fMRI experiment with a block-design
paradigm. There were two kinds of stimulating

blocks.. one was. the task-related block which was, a

checkerboard pattern flashing with frequency of 8
Hz, the other was the rest-related block which was
the white board. The paradigm design or stimulus in-
put function was as follows: first was a rest block
lasting for 80 s, then four task blocks for 10 s each
and four rest blocks for 30 s each alternated, last was
the rest block for 16 s. The ex periments were carried
out with a 1.5 T whole body scanner (Sonata,
Siemens Germany ). Functional images were ob-
tained using a BOLD T;*w eighted gradient-echo EPI
sequence. The technical parameters were as follows:
TR=2000 ms, TE=50 ms, flip angle 90", field of
view 22X 22 em’s matrix size 64X 64, in-plane reso-
lution 3.44 mm, 20 sdlices covering the whole brain
and paralleling to the AC-PC line, slice thickness 6
mm, slice gap 1. 2 mm. A total of 128 volumes of
whole brain functional images were acquired from

each subject.
1.2 computer simulated fM RI dataset

In our experiment, the way to simulate dataset
was similar to the previously reported > > "% . A base
image (displayed in Fig. 1) was replicated 128 times
representing 128 timepoints of the baseline series, to
which the Gaussian noise, low frequency drift, and
PRS time series were added. The base image was ob-
tained by averaging first 35 images of the first subject
in the visual experiment, before averaging these im-
ages were all spatially realigned and normalized using
SPM99 softwarel ! . Mean of the simulated G aussian
noise series was zero and standard deviation was 1.
Low frequency drifts were simulated using first-de-
gree polynomial, which has different amplitudes for
each pixel and a normal distribution with zero mean
and standard deviation 1. The simulated PRS series
was defined as a stimulus input function convolved
with the hemodynamic response function based on a

3,2 . .
(323 Here, stimulus in-

linear time-invariant system
put function is the same as that of the in vivo visual
experiment, hemodynamic response function was the

difference of two gamma functiond 3 .

The ampli-
tudes of PRS, low frequency drift, and noise level
were adjusted to generate the simulated datasets with
the specific contrast to noise ratio (CNR) and the
fixed drift to noise ratio (DNR) 0.85'" . The CNR is
the ratio of the amplitude of the paradigm responsive
signal to the standard deviation of the Gaussian
noisd >* 4. The DNR is the ratio of the amplitude of
baseline drift to standard deviation of the Gaussian

noisé 3 . The four simulated activated areas contained
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25, 36, 49, 64 pixels respectively, shown in Fig. 1.

Fig. 1. The base image and the positions of four simulted acti-
vated areas (the white boxes).

2 Method

2.1 Stationary wavelet transform

Wavelet transform is to approach a signal in
terms of a wavelet family, in such transform the
wavelets act as sine and cosine functions in Fourier
transform, and the wavelet family can be obtained by
dilating and translating a mother wavelet and a scal-
ing function. In the language of signal processing,
the wavelet and the scaling function are equivalent to
a high-pass and a low-pass filter respectively, the first
level wavelet decom position is to extract the high fre-
quency component d; and low frequency component
a, from the original signal a through filtering and

binary decimation. Similarly, the second level decom-
position is to extract dz and a2 from low frequency
component ai. If decomposing j times, the j+ 1
time-frequency-scale components d; ---d;» a; of a, in

turn can be extracted, as is called the multiresolution

9, Binary decimation

analysis of wavelet transform!
causes shift variance of transform, so the stationary
wavelet transform modifies the filters instead of using
decimation to keep the property of shift invariance.
Therefore, we used the stationary wavelet transform

to analyze fM RI series and the programs we used are

coded by the wavelet toolbox of Matlab6. 5 soft-
ware *' . Based on the results obtained from simulat-
ed data below, sym4 is chosen as the wavelet base,
which is approximately symmetry wavelet with com-
pact support. In the practical application, the sym-
metry can keep phrase linear and the com pact support
can efficiently reduce the boundary effects of wavelet

transform.
2.2 Detecting activated signals

The first and foremost step of our method .is to

discern how the components with the different fre-
quency bands in fM RI series distribute in the different
time-frequency scales of the stationary wavelet trans-
form, which was fulfilled by using spectrum analysis
and the simulated PRS. Spectrum of PRS (displayed
in Fig. 2(a)) indicates that main frequency compo-
nents of PRS are 0. 025 Hz and 0. 05 Hz. By con-
ducting the stationary wavelet decom position of the
PRS for 7 levels and single-level reconstruction of the
decomposition coefficients in every scale, the signal of
total 8 timefrequency scales was gained. The fre-
quency spectra of signals ds, d4and d; are displayed
respectively in Fig. 2(b), (¢) and (d), the rest are
not displayed because of the low energy. It is easy to
see from Fig. 2 that the energy of the PRS mainly
distributes in d3 and d4 scales after wavelet trans-

form.
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Fig. 2.

spectra of the signals of d3 d, and d; from PRS via stationary

Frequency spectrum of the simulated PRS and frequency

wavelet composition and single-level reconstruction.

The second step of our method is to remove the
noises. Based on the analysis result in the first step,
we decomposed the simulated and ex perimental data
by stationary wavelet transform, and reconstructed
the decomposition coefficients only in d3 and d4 scales
because the components of the PRS exist in these
scales. The coefficients in other scales that stand for
the noises were discarded. The coefficient in d; scale
was also discarded because the energy of the PRS
component was low and especially, because of base-
line drift overlapped in this scale! . The resultant re-
construction signal was the signal with less noise. So
the way to remove the noises by our method is very
simple.

The last, step,is to use the cross-correlation analy-
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sis method to detect the activated pixels. We chose
the reconstruction signal from d; and d, of PRS as
the reference signal, and conducted the cross-correla-
tion analysis of the reference signal with the recon-
struction signal of simulated and experimental data re-
spectively. In order to reduce the boundary effects of
wavelet transform, we deleted the first 10 and the
last 18 time-point data from reference signal and also
from the reconstruction signal of simulated and exper-
imental data, and used the remaining 100 time-point
data for cross-correlation analysis. To test the signifi-
cance level @ of the correlation coefficient s we per-

formed Fisher s Z transformation > z= Ag_sln
}irr to convert the r to a z-value which follows a

normal distribution, where N is the dimension of se-
quence. Finally, as a comparison, we also conducted
the cross-correlation analysis of the PRS with both
simulated and experimental data, the dimension of
each time series was also chosen as 100. For a short
description, this method was called M1 while the
cross-correlation method under the framework of the
stationary wavelet transform was called M 2.

3 Analysis results
3.1 Simulated data

To make the simulated data closely approach the
real M RI data, the parameters of the simulated
datasets were as follows "” ; the noise level of each
pixel was 2 % of its own baseline value, the amplitude
of activated pixel was 1.5%, 2.0%, 3.0%, and
4% of its own baseline value, the corresponding CNR
was 0.75 1.0, 1.5 and 2.0 respectively. In order
to effectively remove the pixels outside the brain re-
gion, the pixels whose values smaller than one-fifth of
the maximum pixel value in the image were filtered
out for both simulated and experimental data before
processing[ 1 Spatial pixel-cluster of 5 was chosen for
the spatial activated region[n Table 1 summarizes
results obtained with two methods at the different
CNR levels when significance level a=0.0001. Fig.
3 gives the activated maps of M1 (the first row) and
M2 (the second row) at the CNR levels of 1.0 (the
first column), 1.5 (the second column) and 2.0 (ihe
third column) when significance level a = 0. 0001
while Table 2 gives the numbers of correctly detected
activated pixels of two methods at the different signif-
icance level @ when CNR=1.0. From Table 1, Fig.
1 and, Tahle 2 can be seen that as the CN R increases,

the number of correctly detected pixels by two meth-
ods increases, but under the condition of the same
CNR, the number of correctly detected pixels by M2
is alw ays bigger than that by M1, which is even obvi-
ous from the result at CNR=0.75 in Table 1 and in
Fig3. (@) and (d). And more important is, the max-
imum z-value and mean of z-value of correctly de-
tected pixels by M2 is always much bigger than those
obtained by M 1. On the other hand, as the Table 2
indicates as the significance level « increases, the
number of correctly detected pixels by two methods
increases, but under the condition of the same signifi-
cance level @, the number of correctly detected pixels
by M2 is always bigger than that by M 1, particularly
when a is small. Furthermore, when significance
level ais very small, M2 can detect almost the whole
preset activated pixels. From mentioned above we can
say that M2 has a much stronger detection ability,
and is much more sensitive than M1.

3.00 n—— 10.0
Fig. 3.  The results of M1 and M2 for the simulated data.
Table 1. Comparison of two methods at different CNR
CNR Total detected  Correctly detected activated
numbers numbers (z max z mean)
0.75 M1 0 00 0
M2 145 137(11.27 6.41)
1.0 M1 23 23(5.66 4.45
M2 172 163(12.81 7.38)
1.5 M1 158 158(7.37 5.26)
M2 190 174(15.08 10.40)
2.0 M1 174 174(9.20 6. 51)
M2 177 174(18.11 12.7D

(a=0. 0001, the preset total activated pixels number is
174)
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Table 2.

level a

Comparison of two methods at different significance

0.00001 0.0001 0.001 0.01

Significance level «

Correctly detected

activated pixels (M D 0 23 83 143

Correctly detected

activated pixels (M2) 153 163 169 173

(CNR= 1. 0 the preset total activated pixels number is
174)

3.2 Visual fM RI experiment

The imaging data of three subjects were first
transformed into the analytic form by using
SPM 22", then spatially realigned and normalized in-
to stereotaxic atlas space of Talairach*, the pixels
outside the brain region was removed using the same
method as that for the simulated data, the sequence
of each pixel was finally subject to processing by the
methods of M 1 and M 2 respectively. The significance
level of two method is @= 10 " (approximately Bon-
Limited by the length of pa-
pers Fig. 4 only gives the activated maps at Talairach
z=0mm. The first, second and third rows are cor-

ferroni correction ¢ ).

responding to Subject 1, Subject 2 and Subject 3 re-
spectively. The first column is the results of M1 with
the spatial threshold 10, the second is the results of
M2 with spatial threshold 10, and the third is results
of M2 with spatial threshold 20. It can be seen from
Fig. 4 that, although the activated area detected by
M1 are all located in the areas of visual cortex, M2
can also detect these activated areas, and these acti-
vated areas detected are much larger than those by
M1. So, as far as the number of detected activated
pixels is concerned we can say that M2 is more sensi-
tive than M 1. On the other hand, as the colourbar
indicated, in the activated areas commonly detected
by M1 and M2, the z-value detected by M 2 is alw ays
bigger than that by M1, this contrast can be even
seen from the activated maps of Subject 1 and Subject
3. Therefore, M2 is more sensitive than M1 from the
viewpoint of z-value in activated areas. However, it
can also be seen from Fig. 4(b) and Fig. 4(e) that
due to the high sensitivity of M2 a few activated pix-
els detected by M2 are not in the area of visual cor-
tex. But the z-values of these pixels are very small
compared with those in visual activated areas and
when spatial threshold is 20 most of these pixels are
deleted (Fig. 4(c), (f)). In a word, the results of
the visual ex perimental data again justified that M2 is

a more sensitive method.

4.26 m— 10.0

The results of M1 and M2 for the visual experimental da-

4 Discussion and conclusions

A simple and novel method-fM RI time series
analysis based on stationary wavelet and spectrum
analysis—for analyzing fMRI time series is intro-
duced. Compared with the traditional cross-correla-
tion, the proposed method significantly increases the
detection sensitivity w hen analyzing the simulated and
experimental data. The advantage of this method
stems from its stronger capacity of removing both

random noise and baseline drift.

Based on the stationary wavelet transform and
spectrum analysis, if the frequencies of PRS and nois-
es are not overlapped, the proposed method can re-
move noises efficiently and relatively thoroughly, re-
gardless of what distribution the random noise follows
and how much the frequency of baseline drift is. So,
there is no need to make assumptions on the property
of noises or tentatively searching for the time-frequen-
cy scale of baseline drift in the wavelet domain. In
addition, it should be particularly noted that the pro-
posed method is not confined to analyzing the fMRI
data. The time series of other images, such as elec-
troencephalograph (EEG ), magnetoencephalograph
(MEG ), can also be processed by the proposed
method after dightly adapting, so the proposed

method is promising in many signal processing areas.

However, in order to use the proposed method
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validly and efficiently, the following conditions
should be met as best as possible. First, as mentioned
above, the frequencies of PRS when designing the
paradigm should not overlap with those of noises in
fM RI time series. Besides the thermal noise, the oth-
er serious noise in fM RI time series arises from physi-
cal sources, namely scanner drift with frequency
ranged around 0. 0—0. 015 Hz and physiological
sources, such as respiratory with frequency of about
1 Hz and cardiac cycles with frequency of about 0.25
Hz'** | If the frequency of the PRS is in the same
range with that of noise, the PRS is very difficult to
be distinguished from the noise. Secondly, because
the delay between the experimental stimulus and
brain response is very common in the real {M RI ex-
periment and the hemodynamic response function

used to construct the reference signal in our method

has already taken into consideration of this delaym] )

it is not recommended to use other analyzing method
without considering the time delay other than cross-
correlation analysis when using the proposed method.
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